Texническое описание Soliphant M FTM51

Вибрационный принцип измерения

Применение

Soliphant M – это надежный датчик предельного уровня для силосов с мелкозернистыми или порошкообразными сыпучими материалами даже с небольшой насыпной плотностью. Несколько вариантов конструкции позволяют использовать прибор в широком спектре областей применения. Датчик имеет несколько сертификатов для эксплуатации в потенциально взрывоопасных пылевых и газовых средах.

С удлинительной трубкой длиной до 4 м (13 фут) для установки в любом положении

Преимущества

- Мировой лидер в контроле уровня сыпучих материалов
- Функциональная безопасность до SIL2 согласно IEC 61508
- Нет механически движущихся частей
- Нечувствительность к внешним вибрациям и отложениям
- Несколько вариантов электронных вставок
- Регулируемая настройка плотности (настройка насыпной плотности) и задержка переключения
- Температура процесса до 280 °С (536 °F)
- Возможность выбрать датчик с покрытием или полировкой
- Предупреждение в случае прогнозируемого выхода прибора из строя из-за отложений или абразивного износа

EHC

Содержание

О настоящем документе	
Принцип действия и архитектура системы	3
Принцип измерения	. 3
Измерительная система	4
Вход . Измеряемая переменная	6 . 6 . 6
Выход	. 7
Выходной сигнал	. 7
Сигнал при сбое	10
Нагрузка	10
Гальваническая развязка	10
Источник питания	11
Сетевое напряжение	11
Потребляемая мощность	11
Потребление тока	11
Электрическое подключение	11
Включение питания	16
Кабельные вводы	16
Спецификация кабелей	16
Пульсация	17
Защита от перенапряжения	17
Монтаж	17
Руководство по монтажу	17
Окружающая среда	17
Диапазон температуры окружающей среды	17
Температура хранения	17
Климатический класс	18
Вибростойкость	18
Степень защиты	18
Ударопрочность	18
Электрическая безопасность	18
Электромагнитная совместимость (ЭМС);	18
Процесс	18
Диапазон температуры рабочей среды	18
Диапазон давления среды	19
Термический удар	19
Статическое давление	19
Размер частиц	19
Плотность сыпучего материала	19
Поперечные нагрузки (статические)	19 20
Разрушающее давление	ΔU
Механическая конструкция	20
Конструкция, размеры	20
Размеры	24

Масса	27
Интерфейс оператора Элементы дисплея FEM51, FEM52, FEM54, FEM55, FEM58 FEM57 Обнаружение осадка	30 32 33 33
Сертификаты и нормативы Маркировка СЕ Маркировка RCM-Tick Сертификаты взрывозащиты Функциональная безопасность Сертификат CRN ASME В 31.3 Технологическое уплотнение, соответствующее стандарту ANSI/ISA 12.27.01 Директива для оборудования, работающего под давлением 2014/ 68/EU (PED) ROHS Соответствие EAC Дополнительные сертификаты Другие стандарты и директивы	34 34 34 34 34 34 35 35 35 35
Информация о заказе	35
Аксессуары	36
Вспомогательная документация Руководство по эксплуатации (ВА) Дополнительная документация для различных приборов Указания по технике безопасности (ХА)	38

О настоящем документе

Символы

Символы техники безопасности

Λ ΟΠΑCΗΟ

Этот символ предупреждает об опасной ситуации. Если не предотвратить такую ситуацию, она приведет к серьезной или смертельной травме.

№ ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к серьезной или смертельной травме.

№ ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ содержит информацию о процедурах и других данных, которые не приводят к травмам.

Электротехнические символы

Постоянный ток

⊥ Заземление

Заземленный зажим, который заземляется через систему заземления.

Защитное заземление (РЕ)

Клеммы заземления, которые должны быть подсоединены к заземлению перед выполнением других соединений. Клеммы заземления расположены на внутренней и наружной поверхностях прибора.

Справочно-информационные символы

- Светодиод в выключенном положении
- 🔯 Светодиод во включенном положении
- Мигающий светодиод

Описание информационных символов

☑ Разрешено

Обозначает разрешенные процедуры, процессы или действия.

Запрещено

Означает запрещенные процедуры, процессы или действия.

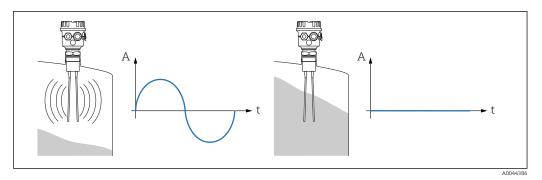
Рекомендация

Указывает на дополнительную информацию.

Символы на рисунках

А, В, С... Вид

1, 2, 3 ... Номера пунктов

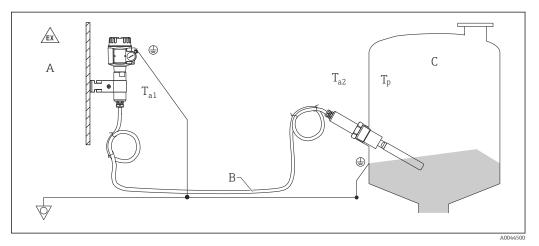

🛦 Взрывоопасная зона

Ж Безопасная зона (невзрывоопасная зона)

Принцип действия и архитектура системы

Принцип измерения

Пьезопривод возбуждает колебания вибрационной вилки датчика Soliphant M на ее резонансной частоте. Если среда покрывает вилку, амплитуда колебаний вилки изменяется (колебания ослабевают). Электронный блок датчика Soliphant M сравнивает фактическую амплитуду колебаний с заданным значением и отправляет сигнал о погружении или непогружении вилки в среду.

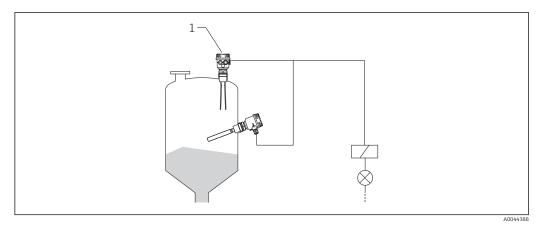


- А Амплитуда
- t Время

Исполнение с раздельным корпусом

Для высоких температур окружающей среды и областей применения с ограниченными условиями монтажа (например, внутри загрузочных отверстий). Кабель между раздельным корпусом и датчиком может быть укорочен на месте.

Рама для настенного монтажа входит в комплект поставки для исполнений с раздельным корпусом.



- А Зона 1, зона 21;
- В Макс. длина 6 м (20 фут)
- С Зона 0, зона 20
- T_{a1}: 70 °C (158 °F)
- T_{a2}: 120 °C (248 °F)
- T_p:
 - 150 °C (302 °F)
 - 230 °C (446 °F)
 - 280 °C (536 °F)

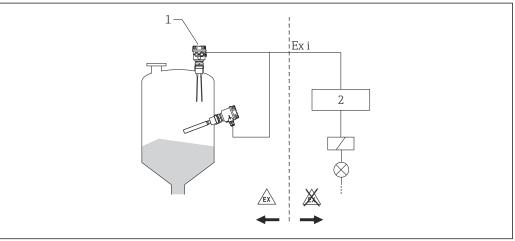
Измерительная система

В качестве измерительной системы может использоваться компактный прибор или прибор в раздельном исполнении с преобразователем. Доступны следующие варианты исполнения электронной части:

Компактный прибор

Исполнение электроники

FEM51


- Двухпроводное исполнение для перем. тока.
- Подключение нагрузки к цепи питания через тиристор

- Трехпроводное исполнение для пост. тока.
- Подключение нагрузки через транзистор (PNP) и отдельное подключение

FEM54

- Универсальная исполнение с релейным выходом
- Подключение нагрузки через 2 беспотенциальных переключающих контакта (DPDT)

Прибор в раздельном исполнении с преобразователем

A0044394

- Исполнение электроники
- 2 Преобразователь, ПЛК, изолирующий усилитель, сегментный соединитель

Для подключения к раздельному преобразователю или изолирующему усилителю, например Nivotester:

- FTL325N, FTL375N (NAMUR) или
- FTL325P, FTL375P (PFM)

FEM55

Передача сигнала 8/16 мА по двухпроводному кабелю

FEM57

- Передача ЧИМ-сигнала
- Токовые импульсы, накладываемые на источник питания по двухпроводной цепи
- Автоматическая диагностика, инициируемая преобразователем, без изменения уровней

FEM58

- Передача сигнала, спадающий фронт 2,2 до 4,8/0,4 до 1,0 мА согласно EN 50227 (NAMUR) по двухпроводной цепи
- Соединительные кабели и последующие приборы проверяются нажатием кнопки на электронной вставке

Вход

Измеряемая переменная	Уровень (в соответствии с ориентацией и длиной)
	Длина 300 до 4000 мм (11,8 до 157 дюйм)
	Диапазон измерения датчика Soliphant M зависит от среды, места установки и длины вилки Диапазон обнаружения находится в пределах длины вибрационной вилки.
	Отличия между вилками для легких сред: Стандартная вилка длиной 155 мм (6,1 дюйм) Насыпная плотность среды \geq 10 g/l (0,62 lb/ft³)
	Отличия между вилками для монтажа в ограниченном пространстве, в случае сильных поперечных нагрузок или большого количества отложений: ■ Короткая вилка длиной 100 мм (3,94 дюйм) ■ Насыпная плотность среды ≥ 50 g/l (3,12 lb/ft³)
Входной сигнал	 Зонды покрыты средой → амплитуда колебаний незначительна или отсутствует Зонды не покрыты средой → большая амплитуда колебаний
	Настраиваемый контроль частоты (диагностика) для обнаружения абразивного износа и образования отложений.
Спектр частот, используемых при измерении	 Стандартная вилка: прим. 140 Гц (на воздухе) Короткая вилка: прим. 350 Гц (на воздухе)

Выход

Выходной сигнал

FEM51

Отказоустойчивый режим	Уровень	Выходной сигнал	Светодиодные индикаторы		
			GN	YE	RD
		1	- \	- 	•
MAX		1 ^{I_R} →2	- \ \	•	•
		1	- \ \	- \	•
MIN		1 ^I _R →2	- 	•	•
Требуется обслуживание	**	12	*	•	×
Неисправность прибора	4	1 ^I _R →2	•	•	

- I_L : ток нагрузки (возможность переключения) I_R : остаточный ток (блокировка)

FEM52

Отказоустойчивый режим	Уровень	Выходной сигнал	Светодиодные индикаторы		
			GN	YE	RD
		L+ I _L + 3	- \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		•
MAX		1	- \ \\	•	•
MIN		L+ I _L + 3	<u>-</u> ;;-	<u>-</u> ;;-	•
		1	<u>-</u> ;;-	•	•
Требуется обслуживание		13	<u>-</u>	•	
Неисправность прибора	4	1	\	•	\

- I_L : ток нагрузки (возможность переключения) I_R : остаточный ток (блокировка)

FEM54

Отказоустойчивый режим	Уровень	Выходной сигнал	Светодиодные индикаторы		
			GN	YE	RD
MAX		3 4 5 6 7 8	- \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- \ \\	•
INITA		3 4 5 6 7 8	<u>-</u> ;;-	•	•
MIN		3 4 5 6 7 8	- \ \\	<u>-</u> ;;-	•
IMIN		3 4 5 6 7 8	\tilde{\	•	•
Требуется обслуживание	-		<u> </u>	•	*
Неисправность прибора	4	3 4 5 6 7 8	<u>-</u> ;;-	•	- \ \\

FEM55

Отказоустойчивый режим	Уровень	Выходной сигнал	Светодиодные индикаторы		икаторы
			GN	YE	RD
MAX		⁺ ₂ ~16 mA ► 1	- ;;-	<u>-</u> ;;-	•
INICA		⁺ ₂ ~8 mA → 1	- ;;-	•	•
MIN		⁺ ₂ ~16 mA → 1	- \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>-</u> ;;-	•
IVIIN		⁺ ₂ ~8 mA → 1	- 	•	•
Требуется обслуживание		⁺ 8/16 mA → 1	*	•	
	4	- 4 6 % MAN = • 88 ■ 3.6 mA	*	•	
Неисправность прибора	4	⁺ 2 3.6 mA → 1	•	•	- \ \ \ \

- ~16 mA: 16 mA ±5 %
 ~8 mA: 8 mA ±6 %

FEM57

Отказоустойчивый режим	Уровень	Выходной сигнал	Светодиодные индикаторы		икаторы
			GN	YE	RD
		150 Hz 	- 		•
		50 Hz	<u>-</u> ;;-	•	•
Требуется обслуживание		150 Hz 	- 	•	×
	A0044535	O Hz	*	•	
Неисправность прибора	4	0 Hz	- 	•	

FEM58

Отказоустойчивый режим	Уровень	Выходной сигнал	Светодиодные индикаторы		икаторы
			GN	YE	RD
MAX		+ 2.2 2 4.8 mA 1			•
I WE UK		+ 0.4 2 1.0 mA → 1	*	•	•
MIN		+ 2.2 2 4.8 mA 1	*		•
IVIIIV		+ 0.4 2 1.0 mA ► 1	*	•	
Требуется обслуживание		+ 0.4 2 4.8 mA → 1	*	•	×
Неисправность прибора	4	+ 0.4 2 1.0 mA 1	•	•	*

Отказоустойчивый режим

Минимальный/максимальный ток покоя выбирается на электронной вставке (при использовании вставки FEM57 только с помощью Nivotester).

МАХ = безопасность для максимального уровня:

Выход переключается в соответствии с настройкой отказоустойчивого режима, когда вибрационная вилка покрывается средой (аварийный сигнал), например для защиты от переполнения.

MIN = безопасность для минимального уровня:

Выход переключается в соответствии с настройкой отказоустойчивого режима, когда вибрационная вилка не покрыта средой (аварийный сигнал), например для защиты от работы всухую.

Задержка срабатывания

Когда вилка покрыта средой 0,5 с.

Исполнение 150°C (302°F): 1,5 с, когда вилка не покрыта средой (1,0 с для короткой вилки)

Исполнение 230 °C (446 °F)/ 280 °C (536 °F): когда вилка покрыта средой 2 с (1,0 с для короткой вилки) Может быть изменена на 5 с для состояний, когда вилка погружена и не погружена в среду

Поведение при переключении

Двоичные

Сигнал при сбое

- ullet FEM51: выходной сигнал в случае отключения питания и неисправности прибора: I_R
- FEM52: выходной сигнал в случае отключения питания и неисправности прибора: < 100 мкА
- FEM54: выходной сигнал в случае отключения питания и неисправности прибора: реле обесточено
- FEM55: выходной сигнал в случае отключения питания и неисправности прибора: < 3,6 мА
- FEM57: выходной сигнал в случае отключения питания и неисправности прибора: < 0 Гц
- FEM58: выходной сигнал в случае отключения питания и неисправности прибора: < 1,0 мА

Нагрузка

FEM51

- Для реле с минимальной мощностью удержания/номинальной мощностью > 2,5 ВА при 253 В (10 mA) или > 0,5 ВА при 24 В (20 mA)
- Для реле с максимальной мощностью удержания/номинальной мощностью > 89 ВА при 253 В или > 8,4 ВА при 24 В
- Падение напряжения на вставке FEM51 макс.. 12 B
- Остаточный ток при заблокированном тиристоре макс. 4 мА(5,5 мА для короткой вилки)
- Ток нагрузки макс. 350 мА (защита от короткого замыкания)

FEM52

- Нагрузка подключается через транзистор и отдельное PNP-соединение, макс. 55 B
- Ток нагрузки макс. 350 мА(импульсная защита от перегрузки и короткого замыкания)
- Остаточный ток при заблокированном тиристоре < 100 мкА(5,5 мА для короткой вилки)
- Емкостная нагрузка макс. 0,5 мкФ при 55 В, макс. 1,0 мкФ при 24 В
- Остаточное напряжение при включенном транзисторе < 3 В (

FEM54

- Переключение нагрузки через 2 плавающих двусторонних контакта (DPDT):
- Перем. ток: I~ max. 6 A (Ex de 4 A), U~ max. 253 B; P~ max. 1500 BA, $\cos \phi = 1$, P~ max. 750 BA, $\cos \phi = > 0.7$
- Пост. ток: I~ max. 6 A (Ex de 4 A) до 30 B, I= max. 0,2 A до 125 B
- При подключении функциональной низковольтной цепи с двойной изоляцией в соответствии с IEC1010 действует следующее правило: сумма напряжений релейного выхода и источника питания равна макс. 300 В

FEM55

- R = (U 11 B) / 16,8 MA
- U = подключение 11 до 36 В пост. тока (во влажных условиях 11 до 35 В пост. тока)

FEM57

- Беспотенциальные контакты реле в подключенном преобразователе Nivotester
- Информацию о нагрузке на контакты см. в технических характеристиках преобразователя

FEM58

- См. «Технические характеристики» подключенного изолирующего усилителя в соответствии с IEC 60947-5-6 (NAMUR)
- Подключение также к изолирующим усилителям со специальными цепями безопасности (I = 3 до 4,8 мA)

Гальваническая развязка

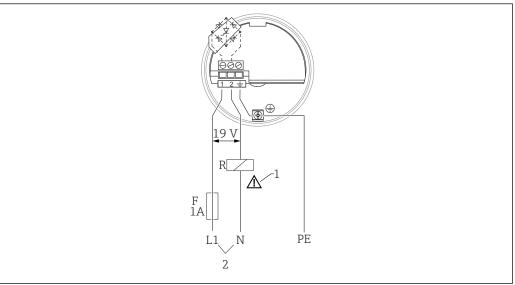
- FEM51, FEM52, FEM55: между датчиком и источником питания
- FEM54: между датчиком, источником питания и нагрузкой
- FEM57, FEM58: см. подключенный преобразователь

Источник питания

Сетевое напряжение

- FEM51: 19 до 253 В
- FEM55: 11 до 36 В пост. тока
- FEM57: 9,5 до 12,5 В пост. тока
- FEM58: 8,2 В пост. тока ±20 %

Потребляемая мощность

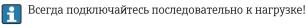

- FEM51: < 1,0 BT
- FEM52: makc. 0,86 Bt
- FEM54: макс. 1,5 Bt
- FEM55: < 600 MBT
- FEM57: < 150 mBT
- FEM58: < 8 мВт для I < 1 мА; < 36 мВт для I = 2,2 до 4,8 мА

Потребление тока

- FEM52: makc. 16 mA
- FEM57: 10 до 13 мА

Электрическое подключение

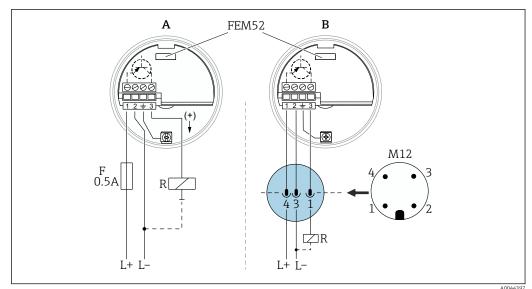
Электронная вставка FEM51 (2-проводное подключение перем. тока)


A004439

- 1 Необходимо подключить внешнюю нагрузку R
- 2 Перем. ток: U~тах. 253 B, ⁵%0 Гц

Источник питания

- Защита от короткого замыкания
- Потребление остаточного тока (I_R): < 4 мA; 5,5 мA для короткой вилки (в момент отключения < 1 мA в течение 100 мc)
- Напряжение разделения: 3,6 kV


Двухпроводное подключение переменного тока

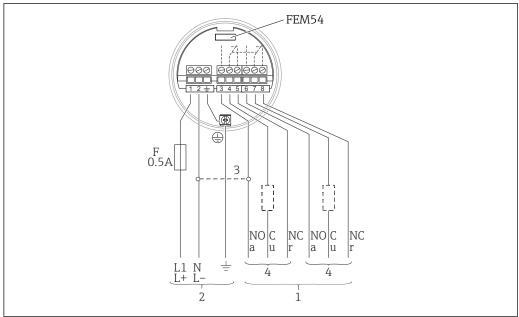
Учитывайте следующее:

- Остаточный ток потребления в заблокированном состоянии
- Для низкого напряжения:
 - падение напряжения на нагрузке таково, что минимальное напряжение на клеммах электронной вставки (19 В) в заблокированном состоянии не снижается;
 - наблюдается падение напряжения на электронике при переключении (до 12 В).
- При выборе реле обращайте внимание на мощность удержания/номинальную мощность.

Электронная вставка FEM52 (PNP-выход пост. тока)

- DC U= 10 ∂o 55 B
- А С кабельным вводом, подключаемым заказчиком (код заказа «080», опции «2», «3», «4», «7»)
- B С разъемом M12, подключенным на заводе-изготовителе (код заказа «080», опция «1»)

Источник питания


- Защита от обратной полярности/защита от короткого замыкания
- Постоянный ток: 10 до 55 В
- Напряжение разделения: 3,6 kV

Трехпроводное подключение постоянного тока с кабельным вводом/разъемом М12

Учитывайте следующее:

- Предпочтительно использовать с программируемыми логическими контроллерами (ПЛК)
- Модули цифрового ввода согласно EN 61131-2
- Положительный сигнал на релейном выходе модуля электроники (PNP).

Электронная вставка FEM54 (с релейным выходом перем./пост. тока)

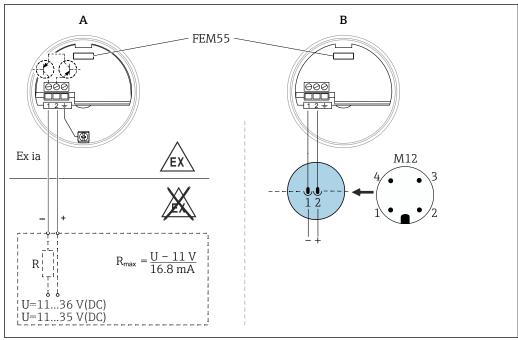
A0044398

- 1 Релейные выходы: нормально разомкнутый/замкнутый (NO, NC)
- 2 Перем. ток: U~ 19 до 253 В, пост. ток: U= 19 до 55 В
- 3 В случае соединения перемычкой релейный выход работает по схеме транзистора NPN
- 4 Нагрузка

Источник питания

- Защита от обратной полярности/защита от короткого замыкания
- Переменное напряжение: 19 до 253 В, ⁵⁰/₆₀ Гц
- Постоянный ток: 19 до 55 В

Универсальное токовое соединение с релейным выходом (DPDT)



Обратите внимание на разные диапазоны напряжения для переменного и постоянного тока.

Учитывайте следующее:

При подключении прибора с высокой индуктивностью установите искрогаситель для защиты контактов реле. Плавкий предохранитель (в зависимости от подключенной нагрузки) защищает контакты реле в случае короткого замыкания. Контакты реле переключаются одновременно.

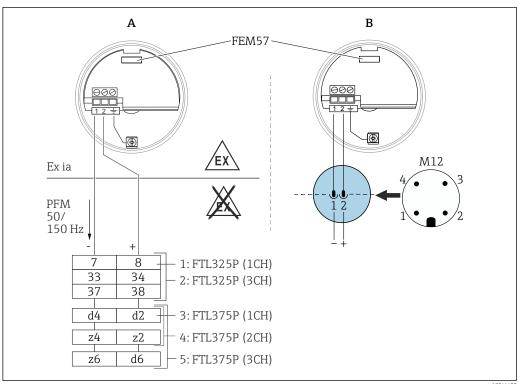
Электронная вставка FEM55 (8/16 мА)

A004439

- A С кабельным вводом, подключаемым заказчиком (код заказа «080», опции «2», «3», «4», «7»)
- В С разъемом M12, подключенным на заводе-изготовителе (код заказа «080», опция «1»)

Источник питания

- Защита от обратной полярности/защита от короткого замыкания
- Напряжение разделения: 3,6 kV


Двухпроводное подключение для раздельного преобразователя с кабельным вводом/разъемом M12

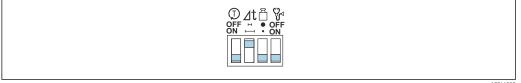
Учитывайте следующее:

- Например, для подключения к программируемым логическим контроллерам (ПЛК), модулям аналогового входа (AI) 4−20 мА согласно EN 61131-2. Скачок тока выходного сигнала с высокого на низкий при предельном уровне.
- Используйте только блоки питания с безопасной гальванической развязкой (например, SELV).

Электронная вставка FEM57 (PFM)

Р Только в комбинации со стандартной вилкой (длина вилки 155 мм (6,1 дюйм)).

- A0044400
- А С кабельным вводом, подключаемым заказчиком (код заказа «080», опции «2», «3», «4», «7»)
- B С разъемом M12, подключенным на заводе-изготовителе (код заказа «080», опция «1»)

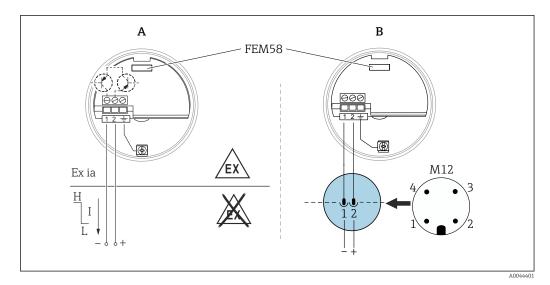

Источник питания

- Защита от обратной полярности/защита от короткого замыкания
- Напряжение разделения: 2,6 kV

Двухпроводное подключение для раздельного преобразователя с кабельным вводом/разъемом M12

Для подключения к преобразователю Nivotester (см. схему) компании Endress+Hauser. Скачок выходного ЧИМ-сигнала с высокой на низкую частоту, когда вилка покрыта средой. Переключение между режимами безопасности для минимального/максимального уровня на Nivotester.

Дополнительная функция автоматической диагностики: после прерывания подачи питания активируется цикл проверки для проверки состояния датчика и электроники, без изменения уровня. Для этого необходимо настроить элементы управления следующим образом:



A0044559

Функция проверки активируется в настройках преобразователя. Светодиоды указывают на ход выполнения проверки.

Электронная вставка FEM58 (спадающий фронт сигнала по NAMUR)

🚹 Только в комбинации со стандартной вилкой (длина вилки 155 мм (6,1 дюйм)).

- Изолирующий усилитель согласно IEC 60947-5-6 (NAMUR); с кабельным вводом, подключаемым заказчиком (код заказа «080», опции «2», «3», «4», «7»)
- В С разъемом M12, подключенным на заводе-изготовителе (код заказа «080», опция «1»)

Источник питания

- Напряжение разделения: 1,9 kV
- Интерфейс данных подключения: IEC 60947-5-6

Двухпроводное подключение для раздельного преобразователя с кабельным вводом/разъемом M12

Учитывайте следующее:

- Для подключения к изолирующему усилителю согласно NAMUR (IEC 60947-5-6), например, FTL325N или FTL375N от Endress + Hauser
- Спадающий фронт сигнала: скачок тока выходного токового сигнала с высокого на низкий на предельном уровне
- Дополнительная функция: кнопка проверки на электронной вставке. Нажатие клавиши прерывает соединение с изолирующим усилителем.

- Для взрывоопасных зон категории Ex d дополнительную функцию можно использовать только в том случае, если корпус не подвергается воздействию взрывоопасной атмосферы.
- Подключение к мультиплексору: установите время в минутах. 5 с.

Включение питания

При включении питания состояние переключения выходов соответствует аварийному сигналу. Правильное состояние переключения регистрируется максимум через 3 с.

Кабельные вводы

В зависимости от корпуса: винтовой зажим на электронной вставке

Муфта М20х1.5 для кабеля:

- Никелированная латунь: ø7 до 10,5 мм (0,28 до 0,41 дюйм)
- Пластмасса: ø5 до 10 мм (0,2 до 0,38 дюйм)
- Нержавеющая сталь: ø7 до 12 мм (0,28 до 0,47 дюйм)

Спецификация кабелей

Достаточно использовать стандартный измерительный кабель с учетом указанных стандартов и требований к помехоустойчивости. При наличии более интенсивных помех необходимо использовать экранированный кабель.

Термостойкость соединительных кабелей

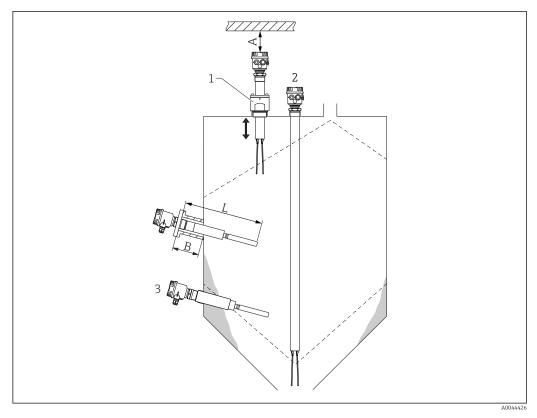
Во взрывобезопасных зонах соединительные кабели должны выдерживать температуру окружающей среды + 5К. Во взрывоопасных зонах необходимо учитывать требования соответствующего сертификата (ХА).

Соединительные кабели

- Электронные вставки: сечение макс. 2,5 мм² (13 дюйм²); жила в наконечнике согласно DIN 46228
- Защитное заземление в корпусе: сечение макс. 2,5 мм² (13 дюйм²)
- Эквипотенциальное соединение на корпусе: сечение макс. 4 мм² (11 дюйм²)

Пульсация

FEM52: макс. 1,7 B, 0 до 400 Гц


Защита от перенапряжения

FEM51, FEM52, FEM54, FEM55: категория перенапряжения II

Монтаж

Руководство по монтажу

Выбор датчика и варианты монтажа

Единица измерения мм (дюйм)

- 1 Скользящая муфта
- 2 FTM51
- 3 FTM51 с термогильзой (не входит в комплект поставки)
- А Зазор
- В Максимальная длина патрубка; для коротких вилок: длина датчика L 145 мм (5,71 дюйм), для стандартных вилок: длина датчика L 200 мм (7,87 дюйм)

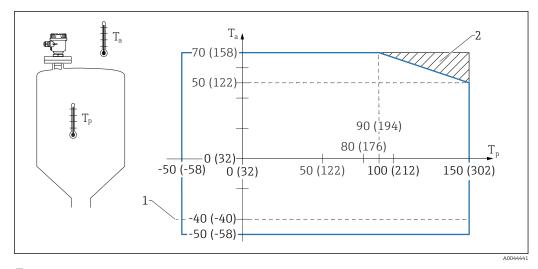
Окружающая среда

Диапазон температуры окружающей среды -50 до +70 °С (-58 до +158 °F);

С корпусом F16: -40 до +70 °C (-40 до +158 °F)

Температура хранения

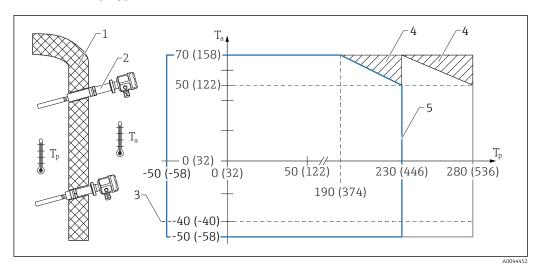
-50 до +85 °С (-58 до +185 °F)


Климатический класс	Защита от погодных явлений в соответствии с DIN IEC 68, часть 2-38, рис. 2a
Вибростойкость	В соответствии с EN 60068-2-64: 0,01 g²/Hz
Степень защиты	 ■ Корпус F15, F16, F17, раздельное исполнение: IP66/IP67, NEMA4X ■ Корпус F13, T13, F27: IP66/IP68, NEMA4X/6P
Ударопрочность	В соответствии с EN 60068-2-27: 30 g
Электрическая безопасность	IEC 61010, CAN/CSA-C22.2 № 61010-1-04 Американский стандарт UL 61010-1, 2 ^{-е} издание
Электромагнитная совместимость (ЭМС);	 Паразитное излучение соответствует стандарту EN 61326, класс электрического оборудования В Помехозащищенность согласно EN 61326, приложение А (Промышленность) и рекомендации NAMUR NE21 (ЭМС).

Процесс

Диапазон температуры рабочей среды

Невзрывоопасные зоны и сертификаты Ex d + DIP


Допустимая температура окружающей среды T_a на поверхности корпуса в зависимости от температуры процесса T_p в резервуаре.

■ 1 Единица измерения: °С (°F)

- 1 Ограничение до –40 $^{\circ}$ C (–40 $^{\circ}$ F) при использовании корпуса F16
- 2 Расширение диапазона температуры за счет использования температурного разделителя

Высокая температура

1 Изоляция

- 2 Изоляция
- 3 Ограничение до −40 $^{\circ}$ C (−40 $^{\circ}$ F) при использовании корпуса F16
- 4 Расширение температурного диапазона при использовании разделителя температуры с внешней стороны изоляции «2»
- 5 Покрытие для защиты от налипания до макс. 230 °C (446 °F)

Диапазон давления среды

-1 до +25 бар (-14,5 до +362,5 фунт/кв. дюйм)

Макс. рабочее давление (MWP):

25 бар (362,5 фунт/кв. дюйм)

Указанный диапазон давления может сократиться в зависимости от выбранного присоединения к процессу. Номинальное давление (PN), указанное на фланцах, относится к исходной базовой температуре +20 °C (+68 °F) для фланцев ASME до 100 °F. Также следует учитывать зависимость между температурой и давлением.

Значения давления, допустимые для более высокой температуры, приведены в следующих стандартах:

- EN 1092-1: 2001, табл.18
 - С точки зрения свойств температурной стабильности материалы 1.4404 и 1.4435 относятся к группе 13E0 в стандарте EN 1092-1, табл. 18. Химический состав этих двух материалов может быть одинаковым.
- ASME B 16.5a 1998, табл. 2-2.2 F316;
- ASME B 16.5a 1998, табл. 2.3.8 N10276;
- JIS B 2220.

Термический удар

- Maкc. 120 K
- При высокой температуре 260 К

Статическое давление

Агрегатное состояние

Твердые частицы

Размер частиц

≤ 10 мм (0,39 дюйм)

Плотность сыпучего материала

Зависит от настройки плотности на электронной вставке:

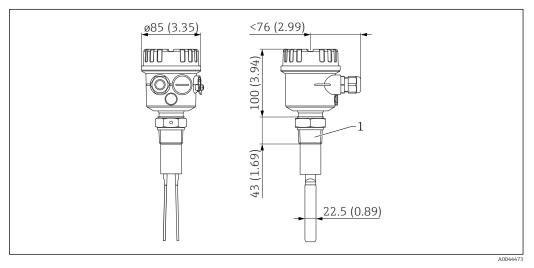
- Стандартная вилка: ≥ 10 или 50 g/l (для легковесных сред)
- Короткая вилка: ≥ 50 или 200 g/l (для монтажа в ограниченном пространстве, при высоких поперечных нагрузках и большом количестве отложений))

Поперечные нагрузки (статические)

На следующем рисунке представлена максимально допустимая поперечная нагрузка F в H (фунт-силах) относительно длины L в мм (дюймах).

Единица измерения мм (дюйм)

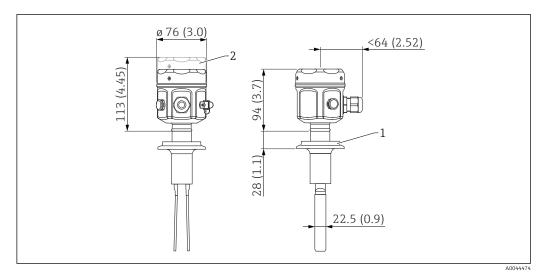
- А Короткая вилка, датчик Ø36 мм (1,42 дюйм)
- В Короткая вилка, датчик Ø43 мм (1,69 дюйм)
- С Короткая вилка, датчик Ø36 мм (1,42 дюйм)


Разрушающее давление

100 бар (1450 фунт/кв. дюйм)

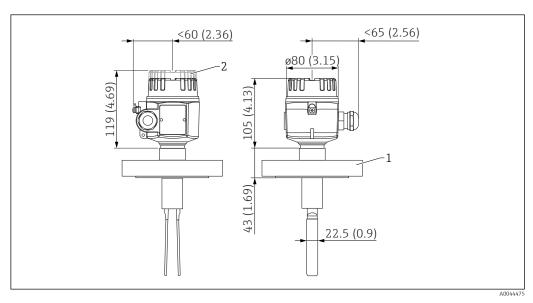
Механическая конструкция

Конструкция, размеры


Корпус из полиэстера F16

Единица измерения мм (дюйм)

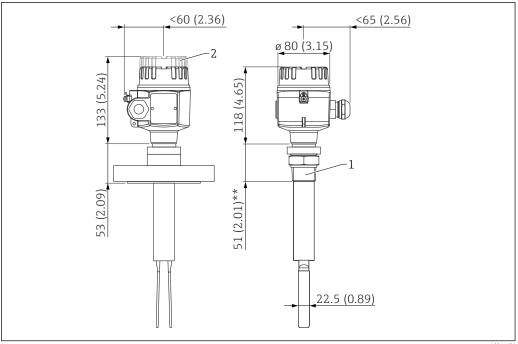
1 Присоединение к процессу: R 1½, 1½ NPT, 1¼ NPT


Корпус из нержавеющей стали F15

Единица измерения мм (дюйм)

- 1 Присоединение к процессу: Tri-Clamp
- 2 Крышка со стеклянным окном

Алюминиевый корпус F17

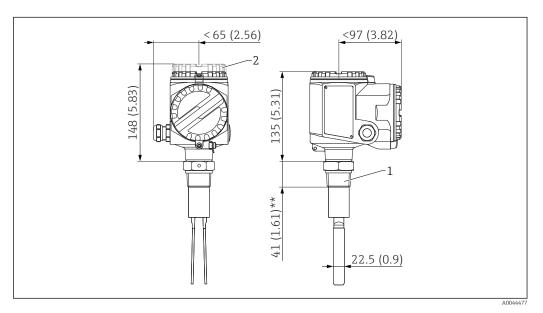


Единица измерения мм (дюйм)

- 1 Присоединение к процессу: фланец
- 2 Крышка со стеклянным окном

Алюминиевый корпус F13 (Ex d), корпус из нержавеющей стали F27 (Ex d)

Адаптация под резьбу датчика.

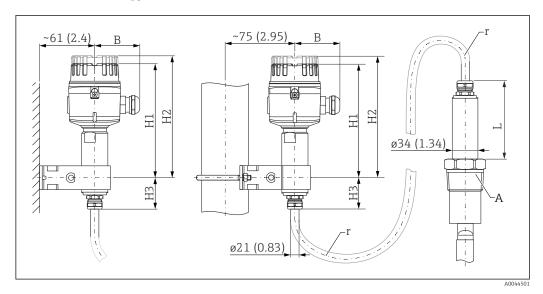

A004447

Единица измерения мм (дюйм)

- 1 Присоединение к процессу: фланец, $R~1\frac{1}{2}$, $1\frac{1}{2}$ NPT, $1\frac{1}{4}$ NPT
- 2 Крышка со стеклянным окном (только для алюминиевого корпуса F13)
- ** Для Tri-Clamp 36 мм (1,42 дюйм)

Алюминиевый корпус T13 (Ex de)

С раздельным клеммным отсеком.



Единица измерения мм (дюйм)

- 1 Присоединение к процессу: R 1½, 1½ NPT, 1¼ NPT
- 2 Крышка со стеклянным окном
- ** Для Tri-Clamp 16 мм (0,63 дюйм)

Для взрывоопасной зоны категории Ex d(e) для FTM51 и FTM52: размеры фланцев и резьбы см. на предыдущей схеме

Монтаж на стене и трубе

Единица измерения мм (дюйм)

Корпус из полиэстера F16

- В: 76 мм (2,99 дюйм)
- H1: 155 мм (6,1 дюйм)
- H3: 41 мм (1,61 дюйм)
- r: радиус изгиба ≥100 мм (3,94 дюйм); с армированным шлангом ≥75 мм (2,95 дюйм)

Корпус из нержавеющей стали F15

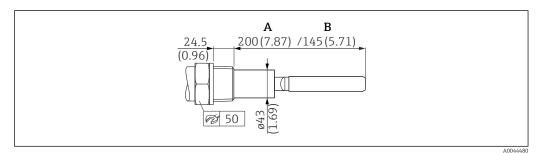
- В: 64 мм (2,52 дюйм)
- H1: 166 мм (6,54 дюйм)
- Н2 (крышка со стеклянным окном): 185 мм (7,28 дюйм)
- H3: 41 мм (1,61 дюйм)
- r: радиус изгиба ≥100 мм (3,94 дюйм); с армированным шлангом ≥75 мм (2,95 дюйм)

Алюминиевый корпус F17

- В: 65 мм (2,56 дюйм)
- H1: 160 мм (6,3 дюйм)
- Н2 (крышка со стеклянным окном): 174 мм (6,85 дюйм)
- Н3: 62 мм (2,44 дюйм)
- r: радиус изгиба ≥100 мм (3,94 дюйм); с армированным шлангом ≥75 мм (2,95 дюйм)

Алюминиевый корпус F13, корпус из нержавеющей стали F27

- В: 65 мм (2,56 дюйм)
- H1: 243 мм (9,57 дюйм)
- Н2 (крышка со стеклянным окном): 258 мм (10,2 дюйм)
- H3: 62 мм (2,44 дюйм)
- r: радиус изгиба ≥100 мм (3,94 дюйм); с армированным шлангом ≥75 мм (2,95 дюйм)


Алюминиевый корпус Т13 (с отдельным клеммным отсеком)

- В: 97 мм (3,82 дюйм)
- H1: 260 мм (10,2 дюйм)
- Н2 (крышка со стеклянным окном): 273 мм (10,7 дюйм)
- Н3: 62 мм (2,44 дюйм)
- r: радиус изгиба ≥100 мм (3,94 дюйм); с армированным шлангом ≥75 мм (2,95 дюйм)

Размеры

Компактное исполнение

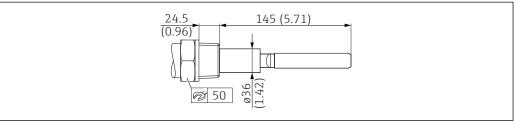
1½ NPT ANSI B 1.20.1, R 1½ EN10226 1)

Единица измерения мм (дюйм)

- А Длина стандартной вилки
- В Длина короткой вилки

Опции заказа

- 1½ NPT ANSI B 1.20.1: код заказа «020», опция «GJ»
- R 1½*** EN10226: код заказа «020», опция «GG»


Аксессуары

- G2 DIN ISO 228-1: код заказа: 52024631
- 2 NPT ANSI B 1.20.1: код заказа 52024630

Характеристики давления, температуры

- Макс. 25 бар (362,5 фунт/кв. дюйм)
- Makc. +280 °C (+536 °F)

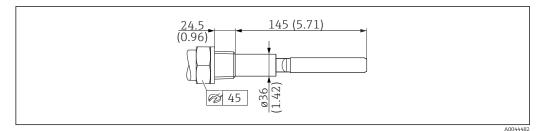
1½ NPT ANSI B 1.20.1

A004448

Единица измерения мм (дюйм)

Опции заказа

Код заказа «020», опция «GX»


Характеристики давления, температуры

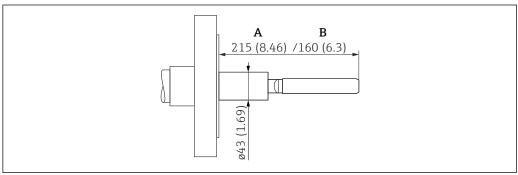
- Макс. 25 бар (362,5 фунт/кв. дюйм)
- Makc. +150 °C (+302 °F)

24

¹⁾ R1½: соединение с конической наружной резьбой R (например, присоединение к процессу прибора Soliphant) можно плотно вкрутить в соединение с цилиндрической внутренней резьбой G (например, сварная бобышка в силосах), так как они имеют одинаковые размеры.

11/4 NPT ANSI B 1.20.1

Единица измерения мм (дюйм)


Опции заказа

Код заказа «020», опция «GK»

Характеристики давления, температуры

- Макс. 25 бар (362,5 фунт/кв. дюйм)
- Makc. +150 °C (+302 °F)

Фланец ANSI В 16.5, EN 1092-1 (DIN 2527 В), JIS В2220

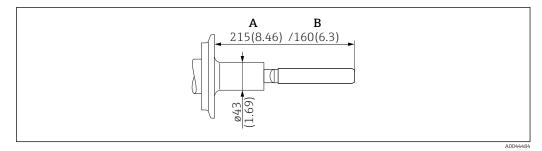
Единица измерения мм (дюйм)

- Длина стандартной вилки
- Длина короткой вилки

Опции заказа

- Фланец ANSI В 16.5: код заказа «020», опция «А#»
- Фланец EN 1092-1 (DIN 2527 B): код заказа «020», опция «В#»
- Фланец JIS B2220: код заказа «020», опция «К#»

Аксессуары


Уплотнение, соответствующее технологическому оборудованию, наличие сертификата FDA.

Характеристики давления, температуры

Тем не менее учитывайте номинальное давление фланца

- Макс. 25 бар (362,5 фунт/кв. дюйм)
- Makc. +280 °C (+536 °F)

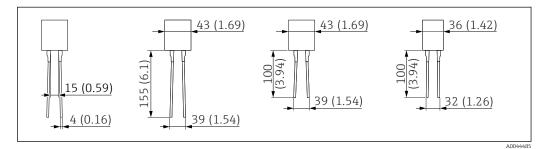
Tri-Clamp 2" ISO2852

Единица измерения мм (дюйм)

- А Длина стандартной вилки
- В Длина короткой вилки

Опции заказа

Код заказа «020», опция «TD»

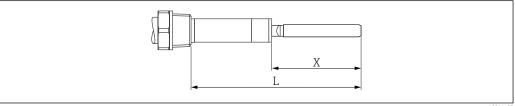

Аксессуары

Зажимное кольцо и лицевое уплотнение устанавливаются по месту эксплуатации, наличие сертификата FDA.

Характеристики давления, температуры

- Макс. 2 бар (29 фунт/кв. дюйм)
- Makc. +150 °C (+302 °F)

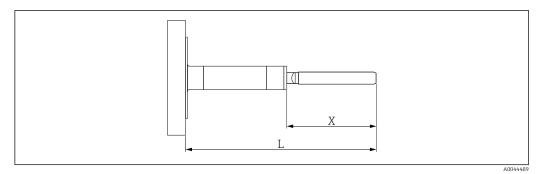
Варианты исполнения вилки


Единица измерения мм (дюйм)

Исполнения с удлинительной трубкой

- Размеры зависят от присоединения к процессу и выбранной удлинительной трубки.
- Дополнительная информация об общей длине и длине вибрационных вилок
- Диаметр удлинительной вилки FTM51:

11/2 NPT, 11/4 NPT, R 11/2

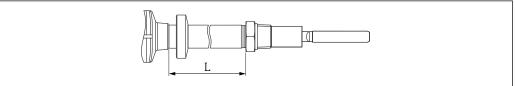


A00444

Единица измерения мм (дюйм)

- L Длина (от нижнего витка резьбы)
- Х Длина вилки

Фланец и Tri-Clamp


Единица измерения мм (дюйм)

- L Длина (от нижнего витка резьбы)
- Х Длина вилки

Исполнения с температурным разделителем

i

Длина и исполнение зависят от температуры и сертификата.

A0044493

Kopnyc F15, F16, F17

Длина L

- 150 °C (302 °F): 145 мм (5,71 дюйм)
- 230 °C (446 °F): 175 мм (6,89 дюйм)
- 280 °C (536 °F): 215 мм (8,46 дюйм)

Kopnyc F13, F27, T13

Длина L

- 150 °C (302 °F): 145 мм (5,71 дюйм), 165 мм (6,5 дюйм)
- 230 °C (446 °F): 165 мм (6,5 дюйм)
- 280 °C (536 °F): 205 мм (8,07 дюйм)

Сертификаты

- 150 °C (302 °F), 145 мм (5,71 дюйм): код заказа «010», вариант «А», «С», «D», «F», «Х», «1», «2», «3», «4», «7», «8»,
- 150 °C (302 °F), 165 мм (6,5 дюйм): код заказа «010», опции «Н», «Z», «5», «6»

Macca

Зависит от типа; см. последний столбец «Дополнительный груз» в информации для заказа.

Материалы

Материалы, контактирующие с технологической средой

- Присоединение к процессу и удлинительная трубка: 316L (1.4404, 1.4435)
- Вибрационная вилка: 316L (1.4404, 1.4435)
- Фланцы: 316L (1.4435 или 1.4404)
- Покрытие РТFE: минимизирует образование отложений, соответствует требованиям FDA
- Покрытие ETFE: минимизирует коррозию

Материалы, не контактирующие с технологической средой

- Уплотнение между присоединением к процессу/корпусом: EPDM
- Клеммы снаружи корпуса: 304 (1.4301), 316L (1.4404)
- Корпус из полиэстера F16: PBT-FR с крышкой PBT-FR или с прозрачной крышкой PA12,
 - Уплотнение крышки: EPDM.
 - Клеевая заводская табличка: полиэфирная пленка (РЕТ)
 - Фильтр-компенсатор давления: PBT-GF20
- Корпус из нержавеющей стали F15: 316L (1.4404)
 - Уплотнение крышки: силикон/РТFE
 - Зажим крышки: 316L (1.4404)
 - Фильтр-компенсатор давления: PA, VMO/VA
 - Заводская табличка на корпусе прибора
- Алюминиевый корпус F17/F13: EN-AC-AlSi10Mg, с пластиковым покрытием.
 - Уплотнение крышки: EPDM.
 - Зажим корпуса: никелированная латунь
 - Фильтр-компенсатор давления (только F17): силикон
 - Заводская табличка: 304 (1.4301)
- Корпус из нержавеющей стали F27: 316L (1.4435)
 - Уплотнение крышки: FVMQ (по отдельному заказу: уплотнение из материала EPDM поставляется в качестве запасной части)
 - Зажим крышки: 316L (1.4435)
 - Заводская табличка: 316L (1.4404)
- Алюминиевый корпус Т13: EN-AC-AlSi10Mq, с пластиковым покрытием
 - Уплотнение крышки: EPDM.
 - Зажим корпуса: никелированная латунь
 - Заводская табличка: 304 (1.4301)

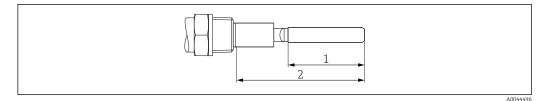
Корпус преобразователя

- Полиэстер: корпус F16
- Нержавеющая сталь:
 - Корпус F15
 - Корпус F27
- Алюминиевый корпус:
 - Корпус F17
 - Корпус F13
 - Корпус Т13

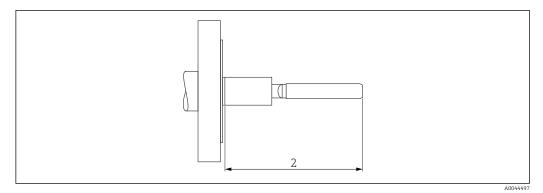
Кабельные вводы

В зависимости от корпуса: винтовой зажим на электронной вставке.

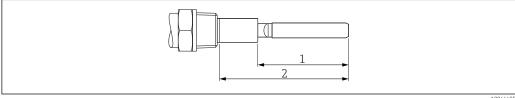
Муфта M20x1.5 для кабеля:


- Никелированная латунь: ø7 до 10,5 мм (0,28 до 0,41 дюйм)
- Пластмасса: ø5 до 10 мм (0,2 до 0,38 дюйм)
- Нержавеющая сталь: ø7 до 12 мм (0,28 до 0,47 дюйм)

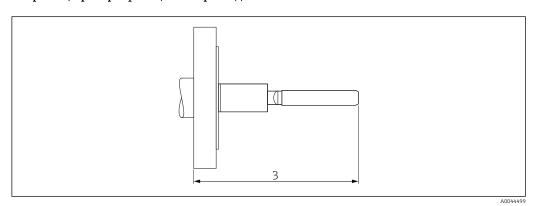
Доработка поверхности


- В зоне сварного шва шероховатость поверхности зависит от технологии изготовления и не измеряется.
- Шероховатость поверхности в зоне основания вилки может отличаться от остальной поверхности.
- Электрополировка для простой очистки и предотвращения образования отложений и коррозии. Выбор шероховатости поверхности (исполнение => тип): Ra < 0,76 мкм
- Приборы, сенсоры которых (вилка и трубка) полностью электрополированы, не подлежат сертификации CRN.

Электрополировка; прибор с резьбовым присоединением


- Электрополированная вилка (0,76 мкм)
- Вилка и трубка электрополированы до сварного шва на присоединении к процессу (0,76 мкм)

Электрополировка; прибор с фланцевым присоединением

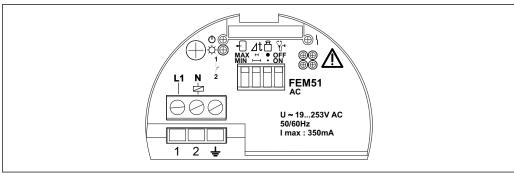

Вилка и трубка электрополированы до сварного шва на присоединении к процессу (0,76 мкм)

Покрытие; прибор с резьбовым присоединением

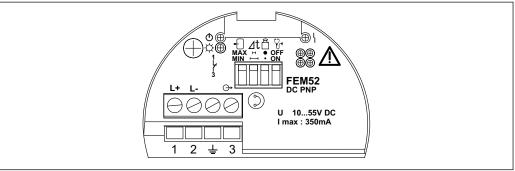
- Вилка покрыта средой
- Вилка и трубка имеют покрытие до сварного шва на присоединении к процессу

Покрытие; прибор с фланцевым присоединением

Полностью защищен покрытием


Интерфейс оператора

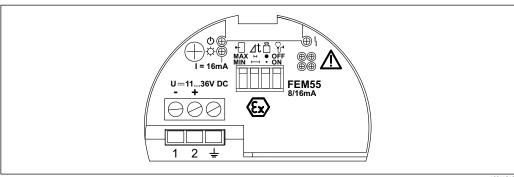
Элементы дисплея


На следующих рисунках положение переключателей соответствует заводской настройке.

FEM51

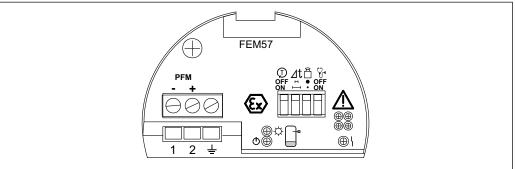

- Горит зеленый светодиод: индикация рабочего состояния
- Желтый светодиод горит: индикация состояния переключения
- Красный светодиод
 - мигает: попеременно с зеленым светодиодом, когда требуется техническое обслуживание
 - горит: в случае неисправности прибора

FEM52


- Горит зеленый светодиод: индикация рабочего состояния
- Желтый светодиод горит: индикация состояния переключения
- Красный светодиод
 - мигает: индикация необходимости технического обслуживания
 - горит: указывает неисправность прибора

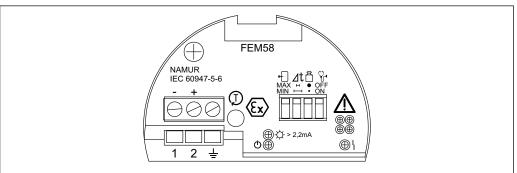
FEM54

- Горит зеленый светодиод: индикация рабочего состояния
- Желтый светодиод горит: индикация состояния переключения
- Красный светодиод
 - мигает: индикация необходимости технического обслуживания
 - горит: указывает неисправность прибора


FEM55

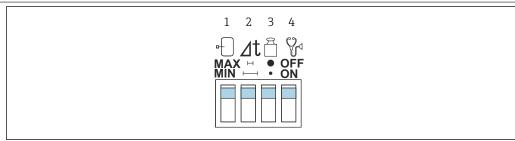
A004451

- Горит зеленый светодиод: индикация рабочего состояния
- Желтый светодиод горит: индикация состояния переключения
- Красный светодиод
 - мигает: индикация необходимости технического обслуживания
 - горит: указывает неисправность прибора


FEM57

A0044511

- Горит зеленый светодиод: индикация рабочего состояния
- Желтый светодиод горит: индикация состояния переключения
- Красный светодиод
 - мигает: индикация необходимости технического обслуживания
 - горит: указывает неисправность прибора


FEM58

A004451

- Горит зеленый светодиод: индикация рабочего состояния
- Желтый светодиод горит: индикация состояния переключения
- Красный светодиод
 - мигает: попеременно с зеленым светодиодом, когда требуется техническое обслуживание
 - горит: указывает неисправность прибора

FEM51, FEM52, FEM54, FEM55, FEM58

A0044551

■ 2 Состояние в момент поставки

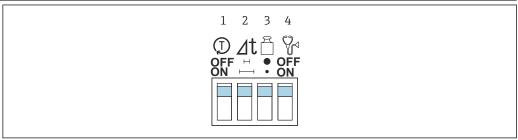
- 1 Переключатель отказоустойчивого режима
- 2 Переключатель для настройки задержки переключения
- 3 Переключатель для настройки плотности сыпучих материалов
- 4 Переключатель для настройки диагностики

Переключатель отказоустойчивого режима

- MAX: защита от перелива
- MIN: защита от работы всухую

Переключатель для настройки задержки переключения

- H
 - 0,5 с, когда вилка покрыта средой
 - 150 °C (302 °F): 1,5 с, когда вилка не покрыта средой (короткая вилка 1 с)
 - 230 до 280 °C (446 до 536 °F): 2 с, когда вилка не покрыта средой (короткая вилка 1 с)


Переключатель для настройки плотности сыпучих материалов

- .
- 50 g/l (3.12 lbf/ft³): стандартная вилка
- 200 g/l (12,49 lbf/ft³): короткая вилка (сыпучие материалы высокой плотности)
- •
- 10 q/l (0,62 lbf/ft³): стандартная вилка
- 50 g/l (3,12 lbf/ft³): короткая вилка (сыпучие материалы высокой плотности)

Переключатель для настройки диагностики

- OFF: диагностика абразивного износа и отложений выключена
- ON: диагностика абразивного износа и отложений включена
 - В случае дополнительной настройки плотности для сыпучих материалов высокой плотности: на абразивный износ и налипания указывает только светодиод на электронной вставке.
 - В случае дополнительной настройки плотности для сыпучих материалов низкой плотности:
 при обнаружении абразивного износа и налипаний срабатывает аварийный сигнал

FEM57

A0044560

З Состояние в момент поставки

- 1 Переключатель для включения и отключения самодиагностики
- 2 Переключатель для настройки задержки переключения
- 3 Переключатель для настройки плотности сыпучих материалов
- 4 Переключатель для настройки диагностики

Переключатель для включения и отключения самодиагностики

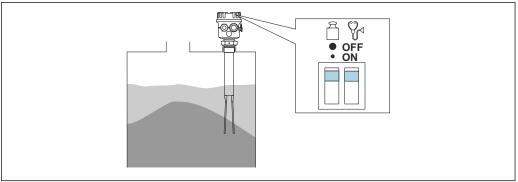
- OFF: автоматическая диагностика выключена
- ОN: одновременная задержка переключения 0,5 с при покрытии вилки средой, настройка плотности для низкой объемной плотности и диагностика включены: автоматическая диагностика выполняется при восстановлении напряжения.

Переключатель для настройки задержки переключения

- ⊢
 - 0,5 с, когда вилка покрыта средой
 - 150 °C (302 °F): 1,5 с, когда вилка не покрыта средой (короткая вилка 1 с)
 - 230 до 280 °C (446 до 536 °F): 2 с, когда вилка не покрыта средой (короткая вилка 1 с)

Переключатель для настройки плотности сыпучих материалов

- •
- 50 q/l (3,12 lbf/ft³): стандартная вилка
- 200 q/l (12,49 lbf/ft³): короткая вилка (сыпучие материалы высокой плотности)
- .
 - 10 q/l (0,62 lbf/ft³): стандартная вилка
 - 50 g/l (3,12 lbf/ft³): короткая вилка (сыпучие материалы высокой плотности)


Переключатель для настройки диагностики

- OFF: диагностика абразивного износа и отложений выключена
- ON: диагностика абразивного износа и отложений включена
 - В случае настройки дополнительной плотности для сыпучих материалов высокой плотности: на абразивный износ и налипания указывает только светодиод на электронной вставке
 - В случае дополнительной настройки плотности для сыпучих материалов низкой плотности:
 при обнаружении абразивного износа и налипаний срабатывает аварийный сигнал

Обнаружение осадка

Обнаружение твердых частиц в воде

Осуществляется только обнаружение осадка. Водоподобные жидкости или увлеченные вещества не обнаруживаются.

A0044514

Сертификаты и нормативы

Сертификаты, нормативы и другую документацию, которая имеется в настоящее время, можно получить в следующих источниках:

веб-сайт компании Endress+Hauser:

→ Downloads.

Маркировка СЕ

Измерительная система соответствует всем нормативным требованиям применимых директив ЕС. Эти требования перечислены в декларации соответствия требованиям ЕС вместе с применимыми стандартами.

Компания Endress+Hauser подтверждает успешное испытание прибора нанесением маркировки СЕ.

Маркировка RCM-Tick

Предлагаемый продукт или измерительная система соответствует требованиям Управления по связи и средствам массовой информации Австралии (ACMA) к целостности сетей, оперативной совместимости, точностным характеристикам, а также требованиям норм охраны труда. В данном случае обеспечивается соответствие требованиям в отношении электромагнитной совместимости. На паспортные таблички соответствующих приборов наносится маркировка RCM-Tick.

A0029561

Сертификаты взрывозащиты

Доступные сертификаты взрывозащиты: см. конфигуратор выбранного продукта.

Все данные о взрывозащите приведены в отдельной документации, которая предоставляется по запросу.

Функциональная безопасность

Возможно также использование в системах, требующих уровня полноты функциональной безопасности SIL2 согласно стандарту IEC 61508.

Сертификат CRN

Приборы с сертификатом CRN оснащаются отдельной табличкой с регистрационным номером 0F10907:5C ADD1.

ASME B 31.3

Конструкция и материалы соответствуют стандарту ASME B31.3. Приварные соединения являются соединениями сквозного приплавливания и соответствуют требованиям Кода ASME по котлам и сосудам под давлением, Раздел IX и стандарту EN ISO 15614-1.

Технологическое уплотнение, соответствующее стандарту ANSI/ISA 12.27.01

Североамериканские принципы монтажа технологических уплотнений. Приборы Soliphant M спроектированы в компании Endress+Hauser в соответствии с ANSI/ISA 12.27.01 как устройства с одинарным уплотнением с оповещением об отказе. Благодаря этому пользователь может отказаться от использования дополнительного технологического уплотнения (и сэкономить средства, необходимые на его установку) в защитном трубопроводе в соответствии с ANSI/NFPA 70 (NEC) и CSA 22.1 (CEC). Эти приборы соответствуют принципам монтажа, характерным для Северной Америки, и отличаются чрезвычайно безопасной и экономичной

установкой в областях применения с высоким давлением и опасными жидкостями. Обращайтесь к указаниям по технике безопасности (ХА) соответствующего прибора для получения дополнительной информации.

Директива для оборудования, работающего под давлением 2014/ 68/EU (PED)

Оборудование, работающее под допустимым давлением ≤ 200 бар (2 900 фунт/кв. дюйм)

Оборудование, работающее под давлением, с допустимым давлением ≤ 200 бар (2 900 фунт/кв. дюйм)Приборы, работающие под давлением, с фланцем и резьбовой втулкой, которые не имеют корпуса, работающего под давлением, не подпадают под действие Директивы по оборудованию, работающему под давлением, независимо от максимально допустимого давления.

Основания

В соответствии со статьей 2 (5) Директивы ЕС 2014/68/ЕU, аксессуары, работающие под давлением, определяются как:

«устройства эксплуатационного назначения, корпуса которых способны выдерживать давление». Если прибор для измерения под давлением не имеет корпуса, находящегося под давлением (камеры высокого давления, которую можно определить как таковую), то, с точки зрения данной Директивы, он не является устройством для работы под давлением.

RoHS

Измерительная система соответствует ограничениям по применяемым веществам согласно Директиве об ограничении использования опасных веществ 2011/65/EU (RoHS 2).

Соответствие ЕАС

Измерительная система соответствует юридическим требованиям применимых директив EAC. Эти директивы и действующие стандарты перечислены в заявлении о соответствии EAC.

Endress+Hauser подтверждает успешное испытание прибора нанесением маркировки EAC.

Дополнительные сертификаты

- Сертификат на материалы согласно EN 10204/3.1 для всех смачиваемых компонентов
- AD2000 по запросу
- Сертификат соответствия TSE (Турецкого института стандартизации) Следующие сведения относятся к смачиваемым компонентам прибора (FTM50/51):
 - Они не содержат материалов животного происхождения
 - При изготовлении и обработке не были использованы дополнительные или рабочие материалы животного происхождения

Другие стандарты и директивы

Директива по низковольтному оборудованию (73/23/ЕЕС)

IEC 61010

Требования по безопасности электрического оборудования для измерения, контроля и лабораторного применения

EN 61326 для серий приборов

Стандарт по ЭМС для электрических контрольно-измерительных приборов и лабораторного оборудования

Информация о заказе

Подробные сведения об оформлении заказа можно получить в региональной торговой организации компании addresses. или в Конфигураторе выбранного продукта на веб-сайте :

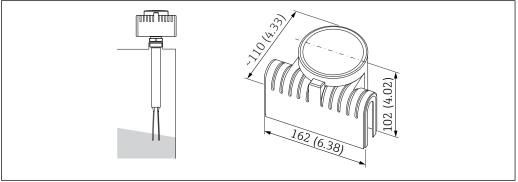
- 1. Нажмите «Corporate»
- 2. Выберите страну
- 3. Нажмите «Продукты»
- 4. Выберите изделие с помощью фильтров и поля поиска
- 5. Откройте страницу изделия

Кнопка «Конфигурация» справа от изображения прибора позволяет перейти к Конфигуратору выбранного продукта.

H

Конфигуратор – инструмент для индивидуальной конфигурации продукта

- Самые последние опции продукта
- В зависимости от прибора: прямой ввод специфической для измерительной точки информации, например, рабочего диапазона или языка настройки
- Автоматическая проверка совместимости опций
- Автоматическое формирование кода заказа и его расшифровка в формате PDF или Excel

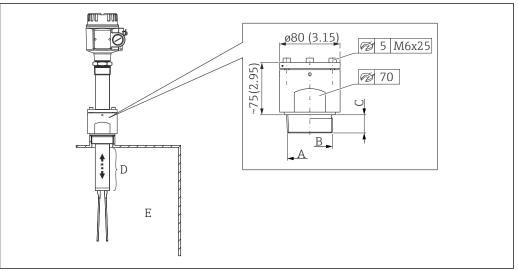

Аксессуары

Аксессуары для прибору

Инструмент для разборки

Код заказа: 71026213

Защитный козырек для корпусов F13, F17 и F27


A004451

Единица измерения мм (дюйм)

Код заказа: 71040497Материал: РА

36

Скользящая муфта

A0044516

Единица измерения мм (дюйм)

- A G2 (316L)
- B 2NPT (316L)
- С Для G2: 24 мм (0,94 дюйм); для 2NPT: 27,5 мм (1,08 дюйм)
- D MWP = 25 бар (362,5 фунт/кв. дюйм)
- $E T_p = макс. 280 °C (536 °F)$
- Для резервуаров под давлением до 25 бар (362,5 фунт/кв. дюйм)
- Только для трубопроводов диаметром Ø43 мм (1,69 дюйм)

Исполнение со скользящей муфтой:

- G2, DIN ISO 228/I, код заказа: 52024631
- 2NPT, ANSI В 1.20.1, код заказа: 52024630

Информация о заказе:

- Код заказа «020», опция «GG», «GJ»
- Код заказа «030», варианты «А», «2», «5»
 - Подходит для датчиков предельного уровня!

Вспомогательная документация

Обзор связанной технической документации

- W@M Device Viewer (deviceviewer): введите серийный номер с заводской таблички.
- Приложение Endress+Hauser Operations: введите серийный номер с заводской таблички или просканируйте двухмерный штрих-код QR-код) на заводской табличке.

Руководство по эксплуатации (ВА)

Справочное руководство

Данное руководство содержит информацию, необходимую для работы с прибором на различных этапах его эксплуатации: начиная с идентификации, приемки и хранения, монтажа, подсоединения, ввода в эксплуатацию и эксплуатации и завершая устранением неисправностей, сервисным обслуживанием и утилизацией.

Дополнительная документация для различных приборов


В зависимости от заказанного исполнения прибор поставляется с дополнительными документами: строго соблюдайте инструкции, приведенные в дополнительной документации. Дополнительная документация является неотъемлемой частью документации по прибору.

Указания по технике безопасности (XA)

В зависимости от соответствующего сертификата с прибором поставляются следующие указания по технике безопасности (ХА). Они являются неотъемлемой частью руководства по эксплуатации.

На заводской табличке приведен номер указаний по технике безопасности (XA), относящихся к прибору.

addresses.

